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Phase diagram of force-induced DNA unzipping in exactly solvable models
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The mechanical separation of a double helical DNA structure induced by forces pulling apart the two DNA
strands~‘‘unzipping’’ ! has been the subject of recent experiments. Analytical results are obtained within
various models of interacting pairs of directed walks in the (1,1, . . . ,1) direction on the hypercubic lattice, and
the phase diagram in the force-temperature plane is studied for a variety of cases. The scaling behavior is
determined at both the unzipping and melting transitions. We confirm the existence of a cold denaturation
transition recently observed in numerical simulations: for a finite range of forces, the system is unzipped by
decreasingthe temperature. The existence of this transition is rigorously established for generic lattice and
continuum space models.
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I. INTRODUCTION

In recent years, micromanipulation and nanomanipulat
of single biological macromolecules have become feas
due to a dramatic improvement of experimental techniqu
By using devices such as optical tweezers@1,2#, soft micro-
needles@3#, and atomic force microscopes@4#, it is now pos-
sible to access physical and mechanical properties of fun
mental biological objects, namely, proteins, nucleic aci
and molecular motors, on the scale of individual molecu
Special effort has been devoted to the measurement of fo
elongation characteristics of double stranded DNA molecu
~dsDNA!, determining its response to external forces a
torques in the absence of enzymes. Themechanical unzip-
ping of dsDNA structure by a force pulling the end of one
the two strands, the end of the other strand being anchore
some physical support, was studied by Bockelmann and
workers @5,6#, who measured the average force along
opening of the two strands. Mechanical forces are in f
exerted on the DNA molecule by different enzymes dur
the process of DNA replication or transcription@7,8#. On the
other hand, the double helical structure of dsDNA may
disrupted ‘‘in vitro’’ by changing pH, solvent conditions
and/or temperature@9#. This transition is known asmelting
denaturation, and it has long been studied by theoretic
physicists@10–12#. Only recently, DNA mechanical denatu
ation has been the subject of theoretical studies. Mos
these studies considered a simple extension of the Pol
Sheraga model@11#, in which the two DNA strands are ho
mogeneous ideal polymer chains interacting with each ot
introducing a constant force pulling apart the two strands
acting on one extremity of both strands. By using a mapp
into a quantum-mechanical problem, it was shown@13–16#
that the opening of the two strands occurs only if the pull
force is increased to a critical value. The unzipping transit
turns out to be a first order phase transition, whereas
melting transition is second order, in the ideal case, ind
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Physics, Strada Costiera 11, 34100 Trieste, Italy.
1063-651X/2001/64~3!/031901~12!/$20.00 64 0319
n
le
s.

a-
,
.
e-
s

d

to
o-
e
t

e

l

of
d-

r,
y
g

n
e

53 @recently both simulations and exact results showed
the melting transition becomes first order, when consider
mutually self-avoiding walks~SAW’s! @17,18##. The hetero-
geneous case was also studied with similar techniques@14#.
Very recently, Monte Carlo simulations of interacting pa
of self avoiding walks on a cubic lattice and bead-and-str
chains in the continuum space determined the whole ph
diagram in the force-temperature plane, revealing the e
tence of a re-entrant zipping-unzipping transition by decre
ing the temperature for a finite range of forces@19#.

In this paper, we obtain exact analytical results for a cl
of simple lattice models of interacting pairs of homogeneo
directed self-avoiding walks. We extend the model intr
duced in Ref.@19# in D5111 to the generic dimension cas
D5d11, and analyze both the scaling behavior of the fi
order unzipping transition and the multicritical scaling law
at the melting transition in the force-temperature plane.
also consider different versions of the model, depending
whether the crossing of the two walks is allowed or not, or
simply penalized by an entropy cost. In all cases, we find t
the critical pulling forceincreaseswith temperature at lowT,
thus implying the existence of acold unzipping transition
@19#. This seemingly paradoxical property is due to the co
petition between the energy gained by increasing the o
portion of DNA and the entropy lost with the full stretchin
of the separated strands. Cold unzipping will be exac
proved for both ideal and self-avoiding chains in the lattic
and for a discrete chain with a constant distance betw
consecutive beads in the continuum space. We also dis
the role of denaturedbubblesforming in the dsDNA open-
ing, as opposed to the end opening of the strands induce
the pulling force. By comparing the phase diagram of t
different models considered, we point out that the appro
mation of neglecting bubbles and considering only Y-shap
configurations shares many of the features of a mean-fi
type approximation, with an upper critical dimensiondc54.

Our paper is organized as follows. In Sec. II we introdu
the models of directed walks on the lattice in any dimens
D, and compute their thermodynamical properties, deriv
the phase diagram in the force-temperature plane. In Sec
we analyze the scaling laws at both the thermal melting
l
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D. MARENDUZZO, A. TROVATO, AND A. MARITAN PHYSICAL REVIEW E 64 031901
mechanical unzipping transitions, and we highlight the f
tures that are physically more interesting in our exact res
~namely, the existence of a reentrant cold unzipping tra
tion, our main result, and the role of forbidding the mutu
crossing of the two strands!. In Sec. IV A we discuss the
physical meaning of re-entrance in our~lattice! models, gen-
eralizing the proof of its occurrence to the more realistic c
of SAW’s. In Sec. IV B we also prove that a discrete chain
the continuumspaceundergoes cold unzipping, and then a
gue why such an effect was not observed in previous ca
lations@14–16#, performed in the limit of a continuumchain.
Eventually, we discuss some related models~with generic
SAW’s!, and give some additional technical details in t
Appendixes.

II. EXACT SOLUTION OF THE LATTICE MODELS

A. Introduction of the models and their behavior
for thermal melting

We consider a simple class of models in
D5(d11)-dimensional hypercubic latticeZD. The two
strands of a homogeneous DNA molecule withN base pairs
are mimicked by two SAW’s, directed along the (1, . . . ,1)
direction. The two chains have one end in common, while
the other end a forcegW is pulling in the (1,21,0, . . . ,0)
direction. The walks gain a binding energy2e (e.0) every
time bases with the same monomer index~or same projection
upon (1, . . . ,1)) interact, i.e.,wrong base pairingis forbid-
den.

The canonical partition function for twoN-step directed
self avoiding walks~DSAW’s! is

ZN~b,gW !5 (
xWPZD

pN~xW ,be!exp~bgW •xW !, ~1!

where pN(xW ,be) is the canonical partition function of two
directed interacting strands whose last base pairs are at
tive distancexW . The following recursion relation holds fo
pN(xW ,be):

pN11~xW ,be!5 (
i , j 51

D

pN~xW2eW i1eW j ,be!

3$11@exp~be!21#dxW ,0W%, ~2!

whereeW i , i 51, . . . ,D, are the canonical Euclidean verso
of the D-dimensional space, andd is the Kronecker delta.

These and similar equations have been intensively s
ied, atgW 50W , within simple models of DNA thermal melting
@17,19#, and, in D52, within the context of random walk
adsorption@20# and wetting problems@21#. Note that the
choice of the (1, . . . ,1) direction, along which the walks ar
directed, is crucial in allowing us to write local recursio
relations. It is thus no surprise that the model belongs to
same universality class of random walks ind5D21 dimen-
sions@22#.

It is well known ~see Ref.@17# for a recent review!, that,
in the absence of a pulling force, within the model defined
03190
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Eq. ~2!, dsDNA undergoes a phase transition between a
temperature double stranded phase and a high temper
denaturated state only forD.3 (d.2): whenD52 and 3,
dsDNA remains double stranded at all temperatures.

However, we note that in Eq.~2! the two strands are al
lowed to cross each other, without any restriction. T
seems rather unphysical, since every real chain has a fi
‘‘hard core’’ distance. Thus one should also consider the c
in which crossing between different strands is forbidden~re-
cent studies of both homogeneous@23# and heterogeneou
@24# DNA melting transition have indeed considered thed
51 case with forbidden crossing!. Let us focus for the mo-
ment on theD52 case, with no pulling force, where th
effect of forbidding crossing is most dramatic. Here the
rection (1/A2,1/A2) can be identified as ‘‘time,’’ and its nor
mal (1/A2,21/A2) as ‘‘space’’ (x). The model with crossing
~w.c.! implies no restriction on the relative distancex,
whereas the one without crossing~w.o.c.! implies thatx can-
not change sign, e.g.,x>0. The model w.o.c. is equivalent t
surface adsorption models previously considered@20#. While
the thermal melting of the two strands w.c. takes place
Tc5`, in the model w.o.c.Tc5e/ log(4/3), as can be de
duced from Ref.@20#. To elucidate this point further, we hav
tackled an intermediate model, where we do not forbid cro
ing but we make it disadvantageous, by assigning a cosV
.0 each time the strands pass through one another. W
calculations similar to those reported below, we find th
melting takes place at the critical temperature~as a function
of V):

Tc~V!5eF logS 4eV

3eV11
D G21

. ~3!

As expected, asV→`, Eq. ~3! yields Tc→e/ log(4/3),
whereasTc;e/V asV→0.

To implement the noncrossing constraint in the model i
generic dimension, we require that, if the DSAW’s join, o
coming from directioneW i and the other from directioneW j
~with iÞ j ), when they divide again, they cannot both pr
ceed along their previous direction; i.e., we forbid that t
first walk goes along directioneW i and the second one along
eW j . This excludes one configuration out ofD(D21) at the
splitting point~the remainingD possibilities would lead to a
zipping of the two strands!. As regards theD53 thermal
melting, again the model w.c. hasTc5`; however, if cross-
ing is forbidden as described above, the critical tempera
is Tc5e/ log(9/8). This result was also found in a simila
calculation by Rubin@25#. For D.3, models with and with-
out crossing both undergo a denaturation transition at a fin
though different, critical temperature, so that the effect
forbidding crossing here is less important~the critical tem-
peratures are the same at the leading order 1/D in the D
→` expansion, as expected!.

B. Behavior of the models at nonzero force

Let us now turn to models with a pulling forcegW in a
generic dimensionD, with gW 5(g,2g,0, . . . ,0). We can find
1-2
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PHASE DIAGRAM OF FORCE-INDUCED DNA . . . PHYSICAL REVIEW E64 031901
the asymptotic value of the canonical partition function@Eq.
~1!# by locating@17,19,26# the singularity closest to the ori
gin of its generating function:

Z~z,be,bg!5 (
N50

`

zN(
xW

pN~xW ,be!exp~bgW •xW !, ~4!

which we will also refer to as the grand partition functio
We stress thatpN(xW ,be) is a generic partition function: its
detailed form will depend on whether or not we allow cros
ing.

To proceed, it is useful to partition the DNA molecule
ds helices~with the strands attached to each other! and
bubbles, sequences in which the two chains share just
first and last base pairs; we also single out the contributio
the unzipped end of the two DSAW’s, i.e., the part from t
last contact to the end. In this way, the grand partition s
~4! can be expressed as

Z~z,be,bg!5
1

12Dz exp~be!

exp~be!

12
exp~be!

12Dz exp~be!
B~z!

3S~z,bg!, ~5!

where we have defined

B~z!5 (
N52

`

zNbN ,

S~z,bg!511 (
N51

`

zN(
xW

@cN21~xW !2cN21~0W !dxW ,0W #

3exp~bgW •xW !. ~6!

In Eq. ~6!, bN is the number of 2N-step bubbles, andcN(xW )
the partition function of twoN-step DSAW’s never touching
each other and having their last sites at a mutual distanxW

and their initial sites at a relative distanceeW i 0
2eW j 0

for some

i 0Þ j 0. By summing over all possibilities for initial condi
tions @see Eq.~8! below#, bN5( iÞ j ; i , j 51

D cN22(eW i2eW j ), so
that we need to find an explicit expression for thecN’s. The
equations they obey are

cN11~xW !5 (
i , j 51

D

cN~xW2eW i1eW j !2cN~0W ! (
iÞ j ; i , j 51

D

dxW ,eW i2eW j
.

~7!

Note that, in Eq.~7!, 0W acts as a sink or absorbing state, i.
once the two walks join, they never leave. In this way,cN(xW )
with xWÞ0W counts the number of pairs of walks that nev
touch each other~and with the last monomers at a relativ
distancexW ), while cN(0W ) counts the number of remainin
pairs of walks that at some point come into contact and t
remain stuck together. This last quantity plays the role of
arbitrary constant and has to be subtracted from the fi
03190
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counting as in Eq.~6! ~see Ref.@25# for another example in
which this prescription was used in aD53 example!.

In order to simplify the presentation, from now on w
restrict our calculations on models w.o.c.~detailed calcula-
tions for this case and the outline of calculations for t
simpler models w.c. are deferred to Appendix A!. The initial
conditions for such models are

c0~xW !5S (
iÞ j ; i , j 51

D

dxW ,eW i2eW j D 2dxW ,eW i 0
2eW j 0

, ~8!

whereeW i 0
andeW j 0

are the directions forbidden as described
Sec. II A.

By performing a Fourier and a discrete Laplace transfo
on Eq. ~7!, and by using the relation betweenbN and cN
given above, we can derive an explicit expression for
bubble generating functionB(z) @see Eq.~A6!#. The singu-
larities of the second denominator of the grand partit
function @Eq. ~5!# are necessary to find the melting tempe
ture. We find that the equations locating these two singul
ties are

z15
1

D2
, ~9!

exp~2be!2Dz25B~z2!. ~10!

The first singularityz1 leads to typical random walk behavio
in the absence of any interaction. The second singula
z2(be) is a function of the strength of the attractive intera
tion between the two strands, thus determining the beha
in the native zipped phase. Atg50, the critical temperature
for thermal melting is obtained when the two singulariti
above coincide (z15z2). Unlike the models w.c., which hav
Tc5` in D<3, those w.o.c. have a finite critical temper
ture in anyD>2 ~see Appendix A for further details!.

As regards the force-dependent third factor in Eq.~5!, it
reads

S~z,bg!5zSsing~z,bg!112zc~z,0W !. ~11!

A third new singularity, depending on the external force, a
fundamental in our calculations arises when computing

Ssing~z,bg![E
[ 2p,p] D

dDqW

~2p!D
c̃~z,qW !(

xW
exp@~bgW 2 iqW !•xW #,

~12!

where c̃(z,qW ) and c(z,0W ) are given in Eqs.~A4! and ~A5!.
Note that in Eq.~12! one can immediately compute the int
grals on dq3 . . . dqD , by using the well known identity
2pd(q)5(xexp(2iqx), so that one is left with the double
integral
1-3
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E
2p

p dq2

~2p!
E

2p

p dq1

~2p!
c̃~z,q1 ,q2,0, . . . ,0!

3 (
x1 ,x2

exp@~bg2 iq1!x11~2bg2 iq2!x2#.

~13!

We now give details of the evaluation of the inner integ
only, the outer one being equivalent. Definingh(q1 ,q2)
[@ c̃(z,q1 ,q2,0, . . . ,0)#21, we aim at proving that the com
plex translationq1→q12 ibg can be performed in the inte
gral

E
2p

p dq1

2p

exp~2 iq1x1!

h~q1 ,q2!
.

Note thath is a periodic function ofq1. We extendq1 to
complex numbers, and consider the contourg as shown in
Fig. 1. By the residue theorem, one can write

E
2p

p dq1

2p

exp~2 iq1x1!

h~q1 ,q2!
1E

0

2bgidy

2p

exp~2 ipx11x1y!

h~p1 iy ,q2!

2E
2p

p dq1

2p

exp~2 iq1x12bgx1!

h~q12 ibg,q2!

1E
2bg

0 idy

2p

exp~ ipx11x1y!

h~2p1 iy ,q2!
5(

q0

Res~H,q0!, ~14!

where the sum runs over all polesq0 of

H[
exp~2 iq1x1!

h~q1 ,q2!

~at fixed q2) inside the contourg, and Res(H,q0) is the

FIG. 1. Contour of integrationg in the complex plane used fo
the evaluation of the integrals in Eq.~14!.
03190
l

residue ofH at q0. Note that due to the periodicity ofh, the
second and fourth terms in the previous equation cancel,
thus the complex translation can be performed provided
no pole ofH can be found inside the contourg. An equiva-
lent conclusion can be reached for the outer integral ondq2.
The condition of having no poles inside the contours of
tegration is satisfied as long asz,z3(bg), where

z3~bg!5
1

~D22!21212 cosh~2bg!14~D22!cosh~bg!

~15!

is found by solving h(2 ibg,ibg)}(12z f(2 ibgW ))50,
with f (qW ) defined in Eq.~A2!. In this case, we find consis
tently thatz3(bg) is just the singularity in the resulting ex
pressionS(z,bg)511z@ c̃(z,2 ibgW )2c(z,0W )#.

As z3 is always smaller thanz1 ~for gÞ0), the singularity
closest to the origin has to be determined betweenz2, con-
trolled by the attractive energye, andz3, controlled by the
pulling forceg. If z2,z3, the DNA molecule is zipped; oth
erwise it is unzipped. The free energy per monomerf and the
average distance between the two ends~projected ontoĝ
[@1,21,0, . . . ,0#), ^xg&, are defined as

f [ lim
N→`

2T

logF(
xW

pN~xW ,be!exp~bgW •xW !G
N

, ~16!

^xg&[ lim
N→`

^ĝ•xW &52
] f

]g
N. ~17!

These quantities read in the thermodynamic limit,

f 5T logz2~be!,
^xg&
N

50, g,gc~T,e!, ~18!

f 5T logz3~bg!;

^xg&
N

5z3~bg!@4 sinh~2bg!14~D22!sinh~bg!#,

g.gc~T,e!, ~19!

where the critical forcegc(T,e) is found by imposing
z2(be)5z3(bg), as given in Eqs.~10! and ~15!. The above
equations show the existence of a first order transition ag
5gc(T,e), if gc(T,e).0. The phase diagram for the mode
w.c. can be found exactly in the same way~see Appendix A
for some details on this!. It is interesting to note that the
singularity z3(bg) does not depend on whether or not w
allow crossing, whereasz2 in the case w.c. is different from
the case w.o.c. This is enough to make the whole phase
gram different for the two kinds of models, as will be di
cussed in Sec. III.

Here we stress that the main interest in using direc
walks is that they are a subclass of SAW’s in the same
1-4
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mension. However, qualitatively similar results can also
obtained with simple random walks~RW’s! @28#, but in this
case it would not be physically meaningful to forbid crossi
as done above. Experimentally, however, it should not
hard to set up an experiment closely related to the calcula
we have performed, by stretching the ds molecule in o
given direction before applying the external force.
e
.
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III. SCALING LAWS FOR THERMAL MELTING
AND UNZIPPING

Let us focus, for concreteness, on the result for the mo
in D52 w.o.c., in order to analyze the scaling laws of t
system. The phase diagram, as also found also in Ref.@19#,
explicitly reads~see Fig. 2!
gc~T,e!5
T

2
cosh21F1

2

1

A12exp~2be!2@12exp~2be!#
21G . ~20!
ic

f
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g
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The model exhibits a first-order ‘‘unzipping’’ transition if w
move at a fixed value ofT,e/ log(4/3), as shown in Eq
~18!. As shown in Fig. 2, limT→0gc(T,e)5e/2, andgc(T,e)
attains its maximum atT5TM.0.9e, where gc(TM)
.0.68e.e/2. The transition is second order atg50; as in
Ref. @17#, we find that, close to the melting point,

^n&[
]

]~be!
logZN;t21f ~tNf t!, ~21!

where ^n& is the mean number of native contacts, witht
5(T2Tc)/Tc , and f t51/2 for the crossover exponent
thermal melting in theD52 case. The scaling functionf (x)
behaves as usual,

f ~x!→0 as x→1`,

f ~x!;x for uxu!1, ~22!

f ~x!;2uxu1/f t for x→2`,

such that̂ n&;Nf t at the transition.

FIG. 2. Phase diagram for the two-dimensional models
DSAW’s (e51 in the figure!. The solid curve refers to the mode
with crossing, the long-dashed curve to the model without cross
and the dashed curve to the model which considers only Y-sha
configurations.
The exact expressions for^n& and ^xg& can be found by
inverse Laplace transforms of the quantitiesZ(z,bg,be),
@]/](be)#Z(z,bg,be) and @]/](bg)#Z(z,bg,be). How-
ever, if we only need scaling relations in the thermodynam
limit, we can use the discrete Tauberian theorem~see Ref.
@27# and Appendix B!, which relates the critical behavior o
a series to the asymptotic behavior of its coefficients.
using this method, we find, in the vicinity of the unzippin
mechanical transition,

^n&;
h1@Nf1~A1g1A2t!#

A1g1A2t
, ~23!

^xg&;2
h2@2Nf2~A1g1A2t!#

A1g1A2t
, ~24!

whereA1(Tc ,gc),A2(Tc ,gc) are determined in such a wa
that dgc(T,e)/dT52(A2 /A1)(gc /Tc), g5(g2gc)/gc , t
5(T2Tc)/Tc , andf15f251 for the two crossover expo
nents, consistently with the fact that the unzipping transit
is first order@the explicit forms ofA1(Tc ,gc) andA2(Tc ,gc)
are worked out in Appendix B#. Note thatA1.0, whereasA2
is negative in the re-entrant part of the transition curve. T
scaling functionsh1,2(x) behave in a similar way tof (x),
and thus we obtain that̂n&;Nf1 and ^xg&;Nf2 are both
extensive at the transition point. The physical interpretat
is that a macroscopic portion of the chain is still in th
double stranded state, but the rest of the chain is unzipp
these are just the two phases coexisting at the first o
transition. This result will be used later to justify the use
Y-shaped configurations.

It is instructive to compare this phase diagram with that
the sameD52 case when we allow crossing. The transiti
line ~plotted in Fig. 2!, obtained fromz25z3 ~see Appendix
A! is

gc~T,e!5T tanh21@12exp~2be!#

5
e

2
1

1

2b
log@22exp~2be!#. ~25!

Both models behave similarly nearT50; they yield a tran-
sition to thecold denaturatedstate described in Ref.@19#.
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When we move at a constant forceg such thatgc(0),g
,MaxT@gc(T,e)#, at low enough temperatures, the molecu
is unzipped, and it zips by increasingT. This feature of the
phase diagrams seems paradoxical at first sight, since
would expect the critical force to decrease monotonically
the temperature is increased. The physical explanation of
result will be given below. In the model w.c., moreover,gc
always increases, approachinge as T→`, and the two
strands remain zipped for every temperature wheng,e. In
the model w.o.c., instead, the two strands again unzip
further increasing the temperature. As regards scaling, on
other hand, the two models are identical, so that we can

FIG. 3. Phase diagrams inD53 and 4 dimensions for model
with and without crossing (e51 in the figure!. It can be seen tha
the difference between the four-dimensional models is negligible
D53 ~model without crossing!, Tc.8.49e. Solid line: modelD
53 with crossing. Long-dashed line: modelD53 without crossing.
Dashed line: modelD54 with crossing. Dotted line: modelD54
without crossing.
lts
N
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that the effect of forbidding crossing is irrelevant in th
renormalization group sense, but has a dramatic effect on
form of the critical line.

Let us now discuss the results that we have obtained
higher dimensions~the critical lines for three- and four
dimensional models are shown in Fig. 3!. Common to all
models is the cold unzipping transition found in theD52
case. Moreover, the scaling laws at the unzipping transi
do not depend on dimensionality in the crossover expone
On the other hand, the thermal melting has dimensional
dependent critical exponents~see Refs.@11,17#!. Conse-
quently, the behavior of the critical linegc(T,e) near the end
point T5Tc also depends onD. As T→Tc

2 the result that we
find in generic dimension is

n

FIG. 4. ~a! An example of a Y-shaped configuration for the DN
molecule: in this approximation bubbles are neglected.~b! A com-
pletely stretched configuration for directed walks, which is dom
nant forT→0.
gc~T,e!

T
;5

e/T2e/Tc~D !, D52,4

expF2
a

@e/T2e/Tc~D !#G , D53

@e/T2e/Tc~D !#1/2$ log@e/T2e/Tc~D !#%21/2, D55

@e/T2e/Tc~D !#1/2, D.5,

~26!
art

for

,
t

where a is a constant, andTc5` when D52 and 3 for
models w.c.

IV. PHYSICAL EXPLANATION OF REENTRANCE

A. Reentrance in lattice models

To obtain some physical insight into our analytical resu
we compute the free energy of a Y-shaped molecule of D
with a force pulling at the extremities~see Fig. 4!. In this
way, we neglect all the configurations withbubbles. Such an
,
A

approximation is valid at lowT, and yields the exact result in
the limit T→0. Since the configurations of the unzipped p
are weighted by exp(bgW•xW), in this limit only the completely
stretched configuration will contribute to the free energy
the unzipped part of theY. In the limit of low temperature,
the free energy is then

F~m,N!;2~N2m!~e1T logm!22gm, ~27!

wherem is the number of monomers in the unzipped partN
is the total number of bases, andm is the connective constan
1-6
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of a single walk. Note that Eq. ~27! @with gW
5g(1,0, . . . ,0)] isalso valid in the case of two self-avoidin
walks, since the connective constant of SAW’s constraine
avoid the fully stretched unzipped part, is the same as
ordinary SAW’s @27,29# ~for a more detailed discussion o
SAW’s we refer to Appendix C!. By minimizing with respect
to m, we find the critical forcegc(T,e), such that Eq.~27! is
minimum for m50 wheng,gc(T,e), and form5N when
g.gc(T,e):

gc~T,e! ;
T→01

2
~e1T logm!. ~28!

This is indeed what we have found in our calculations, a
confirms that reentrance is a robust feature of lattice mod
not depending on dimensionality or self-avoidance. In ot
words, Eq.~28! means that, at lowT, it is more difficult to
open a dsDNA helix asT is increased, because the ener
gain obtained through the unzipping is more than comp
sated for by the entropy loss, since there is only one poss
completely stretched configuration versusmN2m possibilities
for the double stranded portion of the chain~we will see in
Sec. IV B that the entropy loss in the continuum space
hibits a power law correction!. For high enoughT, on the
other hand, other configurations will also contribute to t
open portion, increasing its entropy, and the energy gain
eventually favor the unzipped state, except that inD52 w.c.,
where the presence of bubble enhances the entropy o
native portion at anyT, as explained below.

We have also calculated the phase diagram obtained
considering only theY configuration: this amounts to puttin
the generating function for bubblesB(z)50 in Eq. ~5!. As
expected, theY approximation gives the exact behavior@Eq.
~28!# in the limit T→0, whereas it becomes more and mo
wrong asT is increased„see Fig. 2, where we plot the two
dimensional case explicitly given by gc(T,e)
5(T/2)cosh21@exp(be)21#. For the critical line near the
melting point, this approximation yieldsgc(T,e);(Tc
2T)1/2 for all D, which from Eq.~26! is correct only forD
.5 (d.4). This is because such an approach negle
bubbles, which are expected to be more and more releva
d decreases~for d.dc54, once the two walks have spl
away, they basically never meet again! and T increases. In
this view, it is clear that the puzzling behavior found in t
D52 model with crossing, wheregc increases for allT, is
due to the growing presence of bubbles: before DNA can
unzipped, we have to disentangle all the bubbles that
forming, which is harder and harder asT→`.

B. Reentrance in the continuum

We now prove that discrete chains in continuum sp
also undergo a cold denaturation forT→0. Let us consider
two N-monomer chains inRd with no constraint on the di-
rectedness, with a forcegW pulling at the extremities, and with
a constant unitary distance between consecutive monom
As b→`, bubbles can be neglected and only Y-shaped c
figurations contribute to the partition sum. The partiti
function for aY configuration then reads:
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ZN~be,bg!5 (
m50

N21

ZN2m
z ~be!Z2m

u ~bg!, ~29!

where ZN2m
z (be)5*RdddxW1 . . . ddxWN2m21d(uxW1u

21) . . .d(uxWN2m21u21)exp@(N2m)be# is the
partition function of the zipped portion of the strand
and Z2m

u (bg)5*RdddyW 1 . . . ddyW 2md(uyW 1u21) . . .d(uyW 2mu
21)exp(bgW•(i51

2m yWi) is that of the unzipped end. Chain dis
creteness is crucial in ensuring the validity of Eq.~29! for
b→`, since when one bubble has formed, the length of
stretched portion of the chain can be at most( i 51

2m21yW i

52(m21)(gW /ugW u). The integrals in Eq.~29! can be per-
formed in any dimensions, and the evaluation ofZ2m

u (bg)
involves the modified Bessel function of the first kind
order (d22)/2. In particular,

Z2m
u ~bg! ;

b→`

~2p/bg!m(d21)exp~2mbg!,

and there is a power law correction with respect to the lat
result. We find that

ZN~be,bg! ;
b→`

(
m50

N21

Vd
N2m21exp@~N2m!e#Z2m

u ~bg!,

whereVd is the surface area of the unit sphere ind dimen-
sions. From this, the critical force is easily found,

gc~T,e! ;
T→0e

2
2

d21

2
T log

T

e
2

T

2
logF22d23p (d/2)21GS d

2D G ,
~30!

where G is the Euler gamma function. The critical lin
gc(T,e) increases at lowT, and re-entrance is also present
the continuum, even enhanced with respect to the lat
case. The leading termT logT in Eq. ~30! @due to the power
law correction inZ2m

u (bg)] is indeed not present in thed
51 case, when one correctly recovers Eq.~28! for a lattice
random walk withm52.

We finally wish to discuss the relation of the present tre
ment with previous work@13–16# done on the unzipping o
homo-DNA in the limit of a continuum chain. The ds mo
ecule with the pulling force was described by means of
effective Hamiltonian, which, apart from an irrelevant cen
of mass term, reads

H5E
0

N

dnFTd

b2 S drW

dn
D 2

1V~rW~n!!2gW •
drW

dnG , ~31!

where rW is the relative separation between the strands,b is
the effective Kuhn length of single-stranded DNA, andV is a
realistic short range attractive potential, namely ad function
or a potential well@the two cases should be equivalent a
cording to the standard quantum theory as long as*drWV(rW)
is the same#. The system described by Eq.~31! is equiva-
lently represented by a quantum system with a n
1-7
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Hermitian Hamiltonian. One finds@14,15# that there is a first
order unzipping transition when the force reaches the crit
value

gc~T,e!5A2
4e0~T!Td

b2
, ~32!

where e0(T) is the ground state energy of the quantu
Hamiltonian obtained from Eq.~31! when gW 50W . In the
quantum-mechanical system, forg,gc(T,e) the ground
state is a bound state, while forg.gc(T,e) the spectrum of
Eq. ~31! is continuous.

Let us focus on thed51 case, corresponding to our two
dimensional models without crossing constraints. It is w
known that, atg50, both a symmetric square well and ad
function always have at least one bound state, meaning
DNA remains ds at allT. In Fig. 5 we show the critical force
for the two potentials@obtained simply from Eq.~32!#. It can
be seen from the figure that, at highT, both potentials satu
rate toward the same limit, as in our calculation for t
model w.c. This is expected since thed potential case can b
recovered from our equation~2! in the limit of both con-
tinuum space and time~see Fig. 4!. At low T, however,
gc(T,e);(T/D)1/2 for a square well of widthD, and is con-
stant for thed potential, so that re-entrance is present only
the former case, but with a behavior different from th
found in the lattice. This already signals that the low te
perature behavior of the solution obtained through the qu
tum mapping is rather unphysical. This is due to the fact t
in the limit of a continuum chain the chain constraint
modeled in a ‘‘soft’’ way, by using a harmonic potential b
tween consecutive beads along the chain. This interactio
usually assumed to be entropic@as in Eq.~31!#, and thus
effectively vanishes atT50. In this limit Eq.~31! describes
a set ofN ‘‘free’’ particles moving in an effective potentia
determined byV andg. Consequently, the quantum mappin
is expected to describe the system well except in the l
temperature limit. Indeed, the re-entrance found for

FIG. 5. Critical force ind51, found with quantum mapping
The solid line is the result with a symmetric square well, the das
line the result with ad function. The parameters are chosen so t
the integral of the potentials over space is the same.
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square well potential is due to the unboundedness of
potential ‘‘felt’’ by the ‘‘free particles’’ as soon asgÞ0. As
T→0, fluctuations are not important, and the particles s
close to the minimum of such potential, which is2` for a
force that is small but finite. This is enough to unzip t
strands@30#.

As Zhou observed in Ref.@16#, one can improve this
model by placing a hard core either inside the potential w
or at a finite distance from thed ~this is analogous in spirit to
introducing the crossing constraint in our lattice model!.
Once again, one finds that forT nearTc , which is now finite,
both potentials predict

gc~T,e! ;

T→Tc

~Tc2T!

as in the lattice model@see Eq.~26!#, whereas for lowT the
d shows no re-entrance and the potential well displays aT1/2

behavior. We note, once again, that the low temperature
havior of such ‘‘quantum’’ models is an artifact, when co
sidered as polymer chain models, due to the ‘‘soft’’ enforci
of the chain constraint. In this respect, discrete chain mod
in the continuum space are more realistic, either with c
stant bond length or with harmonic springs between conse
tive beads. In the first case we have indeed proved@see Eq.
~30!# the existence of cold mechanical denaturation. In
second case it was shown to occur by means of nume
simulations@19#.

V. CONCLUSIONS

To conclude, we have studied simple models for DN
mechanical unzipping induced by a pulling force. By usi
analytical techniques, the relevance of forbidding the cro
ing of the two strands and the role played by bubble form
tion in the denaturation process were discussed throug
the whole force-temperature plane. The scaling propertie
the system along the transition line were also determin
The existence of acold mechanical denaturationfor a finite
range of forces at low enough temperatures was proved
actly in a general case for both lattice and continuum sp
models. The fundamental role of chain discreteness was
phasized in comparison with related models studied
means of quantum mapping techniques. Even if we negle
many important effects, such as base pairs heterogeneity
trinsic helicity, wrong base pairing, and different stacki
energy for the natured and denatured states, it would be
teresting to experimentally test this prediction stemm
from such a simple model. Furthermore, on the basis of p
liminary results~analytical and numerical! we anticipate that
even in the presence ofquenchedrandomness in the contac
potential our models display a re-entrant transition, so in t
sense it is really a ‘‘universal’’ feature.
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APPENDIX A: COMPUTATION OF B„z… IN MODELS
OF DSAW’S WITHOUT CROSSING AND OF

THE PHASE DIAGRAM FOR MODELS WITH CROSSING

We here first work out the details to obtain an expli
expression forB(z), defined in Eq.~6!. Starting from Eqs.
~7!, we can perform Fourier and discrete Laplace transfo
to obtain

c̃~z,qW ![ (
N50

`

zN(
xW

exp~ iqW •xW !cN~xW !

5
1

12z f~qW !
@ c̃0~qW !2z f0~qW !c~z,0W !#, ~A1!

where we have made the following definitions:

f 0~qW ![2 (
i , j ; i , j 51

D

cos~qi2qj !, f ~qW ![D1 f 0~qW !,

~A2!

c~z,xW ![ (
N50

`

zNcN~xW !, c̃0~qW ![(
xW

exp~ iqW •xW !c0~xW !.

~A3!

Using c(z,0W )5* [ 2p,p] D@dDqW /(2p)D# c̃(z,qW ), Eq. ~A1! is
easily solved since, by permuting variables inside the res
ing integrals, it is possible to see that they do not depend
the particular step which we forbid. We obtain

c̃~z,qW !5
1

12z f~qW !

c̃0~qW !2zW1~z!@A~D ! f 0~qW !2 c̃0~qW !#

11zW1~z!
,

~A4!

c~z,0W !5A~D !
W1~z!

11zW1~z!
, ~A5!

whereA(D)512@1/D(D21)# is the reduction factor due
to the crossing constraint. As a result, usingB(z)
5z2( iÞ j ; i , j 51

D c(z,eW i2eW j ), we obtain

B~z!5A~D !
z2W2~z!

11z2W1~z!
, ~A6!

where

W1~z!5E
[ 2p,p] D

dDqW

~2p!D

f 0~qW !

12z f~qW !
,

W2~z!5E
[ 2p,p] D

dDqW

~2p!D

f 0
2~qW !

12z f~qW !
. ~A7!

The singularityz151/D2, leading to the usual random wal
behavior, comes in when evaluating the above integrals; t
denominator becomes negative asqW→0 for z.z1.

Here we also give a brief outline of the calculation ne
essary to find the phase diagram for the models of Sec.
03190
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DSAW’s when crossing is allowed. These models are simp
to solve than the corresponding models w.o.c., since it is
necessary to partition the molecule of DNA as done in
text in Eq. ~5!, which allows us to write a more explici
formula for the grand partition function. Indeed we can si
ply start from recursion relations~2!, and, after Fourier and
Laplace transform, find the expression

p̃~z,qW ,be!5
1

12z f~qW !

1

12@12exp~2be!#W0~z!
,

~A8!

for the quantityp̃(z,qW ,be), defined as

p̃~z,qW ,be!5 (
N50

`

zN(
xW

exp~ iqW •xW !pN~xW ,be! ~A9!

with pN(xW ,be) defined as in Eq.~1! and

W05E
[ 2p,p] D

dDqW

~2p!D

1

12z f~qW !
. ~A10!

The final form of the grand partition function, for DSAW’
w.c. in the presence of a pulling force, is

Z~z,be,bg!5
1

12z/z3~bg!

1

12@12exp~2be!#W0~z!
,

~A11!

with z3(bg) defined as in Eq.~15!. Alternatively, one can
proceed exactly as in Sec. II, but with initial conditions

c0~xW !5 (
iÞ j ; i , j 51

D

dxW ,eW i2eW j
. ~A12!

The only resulting difference would be to haveA(D)51 in
Eqs.~A4! and~A6!; after a bit of algebra, one can convinc
oneself that the partition function found by recollecting t
different factors in Eq.~5! is the same as that found in Eq
~A11!. In doing this, one needs to compute the relations
tween the integralsW0(z), W1(z), andW2(z), which may be
done as, e.g., in Ref.@25#. For example, the bubble genera
ing function for both kind of models could also be simp
expressed as

B~z!5A~D !@12Dz21/W0~z!#. ~A13!

Changing the dimension dependent factorA(D) from
A(D)51, when crossing is allowed, toA(D)512@1/D(D
21)#, when crossing is forbidden, is enough for the melti
transition temperature to become finite forD<3.

APPENDIX B: TAUBERIAN THEOREM
AND ITS APPLICATIONS

The discrete Tauberian theorem~see Ref.@27#! states that
the relations
1-9
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c~z![ (
N50

`

cNzN ;
z→z* 2S 1

12z/z*
D r

LS 1

12z/z*
D ~B1!

and

cN ;
N→` Nr21

~z* !NG~r!
L~N! ~B2!

are equivalent, provided thatr.0, $cN% is a positive mono-
tonic sequence, andL is ‘‘slowly varying’’ in the sense speci-
fied in Ref.@27#.

We apply this theorem here first to find the scaling laws
the unzipping transition to give an example of how the re
tions reported in Sec. III can be recovered. When approa
ing the critical line atg5gc from the unzipped phase, th
smallest singularity isz3(bg), as defined in Eq.~15!. The
leading behavior, asz→z3

2 , is

Z~z,be,bg! ;

z→z3
2

1

exp~2be!2Dz32B~z3!

1

12z/z3
,

~B3!

]Z~z,be,bg!

]~bg!
;

z→z3
2

2
1

exp~2be!2Dz32B~z3!

1

~12z/z3!2

3
]z3 /]~bg!

z3~bg!
, ~B4!

]Z~z,be,bg!

]~be!
;

z→z3
2

exp~2be!

@exp~2be!2Dz32B~z3!#2

1

12z/z3
,

~B5!

where we have neglected inessential factors wheng;gc .
Consequently, the application of the Tauberian theor
yields

ZN~be,bg! ;
N→` 1

exp~2be!2Dz32B~z3!
z3

2N , ~B6!

]ZN~be,bg!

]~bg!
;

N→`

2
N

exp~2be!2Dz32B~z3!

3z3
2N ]z3 /]~bg!

z3~bg!
, ~B7!

]ZN~be,bg!

]~be!
;

N→` exp~2be!

@exp~2be!2Dz32B~z3!#2
z3

2N .

~B8!

The canonical partition functionZN can be expressed i
terms of previously defined quantities asZN(be,bg)
5(xWpN(xW ,be)exp(bgW•xW) @see Eqs.~1! and ~4!#.

Note that at the critical linez2(be)5z3(bgc), implying
that the e-dependent denominator in the above equati
03190
f
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vanishes, as the critical line is approached@that is, g[(g
2gc)/gc!1 andt[(T2Tc)/Tc!1]. In this limit the order
parameters obey

^n&[
]ZN /]~be!

ZN
;

N→`exp~2be!

A1g1A2t
, ~B9!

^xg&[2
]ZN /]~bg!

ZN
;

N→`]z3 /]~bg!

z3~bgc!
N. ~B10!

The coefficientsA1(Tc ,gc) andA2(Tc ,gc) determine the
normal direction in the@ log(T),log(g)# plane, and are re-
ported below:

A1~Tc ,gc!5bcgcS D1
]B~z3~bcgc!!

]z3
D z3

2~bcgc!

3@4 sinh~2bcgc!14~D22!sinh~bcgc!#,

~B11!

A2~Tc ,gc!52bcgcS D1
]B~z3~bcgc!!

]z3
D z3

2~bcgc!

3@4 sinh~2bcgc!14~D22!sinh~bcgc!#

1bce exp~2bce!. ~B12!

As expected, it may be easily checked that, whatever di
tion we choose to approach the critical curve, physical qu
tities such as Eq.~B9! only depend on the projection of thi
direction on the normal to the critical line. To show this, o
first needs to observe that criticality is achieved through
vanishing of the denominator in Eq.~B9!, and then to apply
the implicit function theorem to this denominator.

Recently, some authors@13,14# suggested, as an alterna
tive order parameter for the unzipping transition, the num
m of monomers from the last contact to the end. By using
same tools as before, we can find some quantities of inte
such as the probability distribution of havingm monomers
‘‘liberated’’ ~in the equations below, we suppose 1!m!N).
In general,

P~m!5

(
W

dnu.z. ,mpW

(
W

pW

, ~B13!

whereW are pairs of directed walks,pW is their Boltzmann
weight, andnu.z. is the number of ‘‘liberated’’ monomers o
the configuration. The possible enforcing of the cross
constraint does not affect the following equations, simp
shifting the critical melting temperatureTc .

At zero force andT,Tc , in the native state,

P~m!}exp@2m log~z1 /z2!#ma(d), ~B14!

wherema(d)5m21/2 in d51, @ log(m)#21 in d52, and con-
stant ford.2. We recall thatz151/D2, with D5d11. At
criticality,
1-10



in
he

d

t.
m

ce

.g

Y
nd

is-

he

It

e

of

n-

to

y

PHASE DIAGRAM OF FORCE-INDUCED DNA . . . PHYSICAL REVIEW E64 031901
P~m!}~N2m!f t21ma(d), ~B15!

where in the first factor there are logarithmic corrections
d52 and 4 to the power-law behavior controlled by t
crossover thermal exponentf t @17#. AboveTc , we have

P~m!}~N2m!b(d)ma(d), ~B16!

with b(d)52u12d/2u21 if dÞ2, in d52 mb(d)

51/@N log2(N)#. At force different from zero, in the zippe
phase, we obtain

P~m!}exp@2m log~z3 /z2!#, ~B17!

while, in the unzipped phase,

P~m!}exp@2~N2m!log~z2 /z3!# ~B18!

if T,Tc , and

P~m!}exp@2~N2m!log~z1 /z3!# ~B19!

if T.Tc . Just at criticality, the probability distribution is fla
For the Y-shaped configuration, at force different fro

zero, we obtain

P~m!}exp@2~N2m!log~zy /z3!# in the u.z. phase,
~B20!

P~m!}exp@2m log~z3 /zy!# in the z. phase,~B21!

P~m!}const at criticality, ~B22!

wherezy5exp(2be)/m is the singularity controlling the free
energy per monomer in the Y-zipped phase, andm5D the
connective constant of a single directed walk. At zero for
we obtain

P~m!}exp@~2~N2m!log~zy /z1!#ma(d) denatured phase,
~B23!

P~m!}exp@2m, log~z1 /zy!#ma(d) native phase,
~B24!

P~m!}ma(d) at criticality. ~B25!

Let us give the details in a simple case, to obtain, e
Eqs.~B20!, ~B21! and ~B22!. One has

P~m!5
ZN2m

PS Zm
f ree

ZN
, ~B26!

whereZN2m
PS is the partition function of two (N2m) mono-

mer chains with the end points in common~this is the origi-
nal Poland-Sheraga model!, Zm

f ree is the partition of two
m-monomer chains with no base pair in contact, andZN is
given by Eq.~1!. We have, for Y at nonzero force,ZN2m

PS

5zy
2(N2m) , Zm

f ree;z3
2m , and

ZN;zy
2N native phase, ~B27!

ZN;z3
2N above criticality. ~B28!
03190
,
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APPENDIX C: Y CONFIGURATIONS WITH SAW’S

In this appendix we extend the analysis of Sec. IV to a
configuration where the two chains are generic SAW’s a
not directed walks. Here we takegW 5g(1,0, . . . ,0).

Let us callcN(0W ,xW ) the number ofN-step SAW’s ending
in xW and starting in 0W , and cN,gW5(xWcN(0W ,xW )exp(bgW•xW) ~so
that cN[cN,gW 50W). As a first step, we need to prove the ex
tence of a connective constantmgW for a single SAW in the
presence of a pulling force, i.e.,cN,gW;mgW

N for large N. The
existence of a connective constant then follows@27# from the
inequality

(
xW

cN~0W ,xW !exp~bgW •xW !<(
xW ,xW1

cN1
~0W ,xW1!cN2N1

~xW1 ,xW !

3exp~bgW •xW1!exp@bgW •~xW2xW1!#,

~C1!

which implies the subadditivity ofcN @27#. From the connec-
tive constants of RW’s and DSAW’s, we can establish t
following bounds@recall that heregW 5g(1,0, . . . ,0)] for the
connective constant of a SAW ind dimensions:

d211exp~bugW u!<mgW<2~d21!12 cosh~bugW u!.
~C2!

Let us now introduce the canonical partition function.
reads

ZN5 (
m50

N21

exp~b~N2m!e!cN2m21 (
xW1 ,xW2

c2m8 ~xW1 ,xW2!

3exp@bgW •~xW22xW1!#, ~C3!

wherec2m8 (xW1 ,xW2) counts the SAW’s which do not cross th

first N2m attached monomers of theY, andxW1 and xW2 are
the end points of the strands.

An upper bound is found if we allow the opened part
the Y to cross the firstN2m zipped monomers:

ZN
upper5 (

m50

N21

exp~b~N2m!e!cN2m21 (
xW1 ,xW2

c2m~xW1 ,xW2!

3exp@bgW •~xW22xW1!#. ~C4!

The grand canonical partition function defined from Eq.~C4!

displays singularities in z[z151/mgW
2 and in z[z2

51/m exp(be), wherem is the connective constant of a sta
dard SAW ind-dimensional space, i.e.,m5mgW 50W .

To find a lower bound forZN , we restrict theY configu-
rations to those with the joined part of the Y constrained
lay in the half-space$xW uxW•eW1.0,eW1•gW /ugW u50% ~the origin is
in the bifurcation point!, and the unzipped part forced to sta
in the other half-space,
1-11
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ZN
lower5 (

m50

N21

exp~b~N2m!e!cN2m21
le f t (

xW1 ,xW2

c2m
right~xW1 ,xW2!

3exp@bgW •~xW22xW1!#, ~C5!

where with cn
le f t(right) we have indicated the number o

n-step SAW’s constrained to stay in the left~right! half space.
As the connective constants can be rigorously proved to
the same even for walks constrained in such a way~see Refs.
@27,29# for details, it is important here that walk
generated from a reflection through the hyperplane$xW uxW•eW1

.0,eW1•gW /ugW u50% leave the scalar productgW •xW unchanged!,
the singularities of the grand partition function obtained fro
Eq. ~C5! are thesameas those of(N50

` ZN
upperzN. Thus the
l.

e

a

.

03190
e

grand partition function singularities associated toZN in Eq.
~C3! arez5z1 ,z2 given above.

In summary, we have proved that a mechanical unzipp
transition takes place whenmgW

2
5m exp(be), similarly to the

directed walk case. We suggest that a standard computa
of mgW ~for instance, through exact enumeration! could give
an accurate phase diagram for the ‘‘Y approximation’’ wi
SAW’s.

The bounds in Eq.~C2! immediately give two bounds
within which the transition linegc(T,e) lies. In theT→0
limit, Eq. ~28! follows, since both bounds give the sam
asymptotic transition line. This should be the same also
generic SAW’s, since in theT→0 limit it is sufficient to
consider onlyY-shaped configurations. This demonstrates
existence of cold unzipping at sufficiently low temperatu
for the generic self-avoiding case.
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